125 research outputs found

    Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    Get PDF
    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified

    Cascade and anti-Cascade Polarization Measurements at 800 GeV/c

    Full text link
    The polarization of neutral Cascade and anti-Cascade hyperons produced by 800 GeV/c protons on a BeO target at a fixed targeting angle of 4.8 mrad is measured by the KTeV experiment at Fermilab. Our result of 9.7% for the neutral Cascade polarization shows no significant energy dependence when compared to a result obtained at 400 GeV/c production energy and at twice our targeting angle. The polarization of the neutral anti-Cascade is measured for the first time and found to be consistent with zero. We also examine the dependence of polarization on transverse production momentum.Comment: 4 page PR

    Trophic Ecology of Atlantic Bluefin Tuna (Thunnus thynnus) Larvae from the Gulf of Mexico and NW Mediterranean Spawning Grounds: A Comparative Stable Isotope Study

    Get PDF
    The present study uses stable isotopes of nitrogen and carbon (δ15Nandδ13C) as trophic indicators for Atlantic bluefin tuna larvae (BFT) (6–10mm standard length) in the highly contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED). These regions are differentiated by their temperature regime and relative productivity, with the GOM being significantly warmer and more productive. MED BFT larvae showed the highest δ15N signatures, implying an elevated trophic position above the underlyingmicrozooplankton baseline. Ontogenetic dietary shifts were observed in the BFT larvae from the GOM and MED which indicates early life trophodynamics differences between these spawning habitats. Significant trophic differences between the GOM and MED larvae were observed in relation to δ15N signatures in favour of the MED larvae, which may have important implications in their growth during their early life stages. These low δ15N levels in the zooplankton from the GOM may be an indication of a shifting isotopic baseline in pelagic food webs due to diatrophic inputs by cyanobacteria. Lack of enrichment for δ15N in BFT larvae compared to zooplankton implies an alternative grazing pathway from the traditional food chain of phytoplankton— zooplankton—larval fish. Results provide insight for a comparative characterization of the trophic pathways variability of the two main spawning grounds for BFT larvaeVersión del editor4,411

    Fin Spine Bone Resorption in Atlantic Bluefin Tuna, Thunnus thynnus, and Comparison between Wild and Captive-Reared Specimens

    Get PDF
    Bone resorption in the first spine of the first dorsal fin of Atlantic bluefin tuna (ABFT) has long been considered for age estimation studies. In the present paper spine bone resorpion was assessed in wild (aged 1 to 13 years) and captive-reared (aged 2 to 11 years) ABFT sampled from the Mediterranean Sea. Total surface (TS), solid surface (SS) and reabsorbed surface (RS) were measured in spine transverse sections in order to obtain proportions of SS and RS. The spine section surface was found to be isometrically correlated to the fish fork length by a power equation. The fraction of solid spine bone progressively decreased according to a logarithmic equation correlating SS/TS to both fish size and age. The values ranged from 57% in the smallest examined individuals to 37% in the largest specimens. This phenomenon was further enhanced in captive-reared ABFT where SS/TS was 22% in the largest measured specimen. The difference between the fraction of SS of wild and captive-reared ABFT was highly significant. In each year class from 1- to 7-year-old wild specimens, the fraction of spine reabsorbed surface was significantly higher in specimens collected from March to May than in those sampled during the rest of the year. In 4-year-old fish the normal SS increase during the summer did not occur, possibly coinciding with their first sexual maturity. According to the correlations between SS/TS and age, the rate of spine bone resorption was significantly higher, even almost double, in captive-reared specimens. This could be attributed to the wider context of systemic dysfunctions occurring in reared ABFT, and may be related to a number of factors, including nutritional deficiencies, alteration of endocrine profile, cortisol-induced stress, and loss of spine functions during locomotion in rearing conditions.Versión del editor4,411

    Sex-Specific Growth and Reproductive Dynamics of Red Drum in the Northern Gulf of Mexico

    Get PDF
    The Red Drum Sciaenops ocellatus stock is heavily targeted in the Gulf of Mexico (GOM) by recreational fishers and supports a small commercial fishery in Mississippi. Despite their popularity, little recent work has been done to describe their life history. In this work, we describe sex‐specific growth and reproductive dynamics of Red Drum collected from the northern GOM from September 2016 through October 2017. We evaluated seven candidate growth models and found that the three‐parameter von Bertalanffy growth function (VBGF) was the best candidate length‐at‐age model. No significant difference in growth between sexes was observed with the three‐parameter VBGF, despite the female‐specific curve having a larger mean asymptotic length than the male‐specific curve. All seven candidate growth models predicted similar mean length‐at‐age estimates, and four of them exhibited significant differences in sex‐specific mean length at age, with females reaching a larger length at age than males after age 5. There was no significant difference between the sex‐specific weight‐at‐length relationships. Red Drum are batch spawners that spawn in northern GOM coastal waters during August and September. We estimated 3.7 d between spawns and 10.5 spawning events per female in 2017. Nearly 20% of fish collected during the spawning season were sexually mature but reproductively inactive, indicating the possibility of skipped spawning. The age at 50% maturity was around 3 years (length at 50% maturity = 670 mm TL) in both sexes, but fish were not spawning capable until age 4.5 (703 mm TL) in males and age 5.8 (840 mm TL) in females. Furthermore, elevated gonadosomatic indices were not observed until around age 5–6. The updated life history information presented in this work helps to address current data limitations and provides critical information for future assessments of Red Drum stocks in the northern GOM

    Genetic Structure of Bluefin Tuna in the Mediterranean Sea Correlates with Environmental Variables

    Get PDF
    Abstract Background Atlantic Bluefin Tuna (ABFT) shows complex demography and ecological variation in the Mediterranean Sea. Genetic surveys have detected significant, although weak, signals of population structuring; catch series analyses and tagging programs identified complex ABFT spatial dynamics and migration patterns. Here, we tested the hypothesis that the genetic structure of the ABFT in the Mediterranean is correlated with mean surface temperature and salinity. Methodology We used six samples collected from Western and Central Mediterranean integrated with a new sample collected from the recently identified easternmost reproductive area of Levantine Sea. To assess population structure in the Mediterranean we used a multidisciplinary framework combining classical population genetics, spatial and Bayesian clustering methods and a multivariate approach based on factor analysis. Conclusions FST analysis and Bayesian clustering methods detected several subpopulations in the Mediterranean, a result also supported by multivariate analyses. In addition, we identified significant correlations of genetic diversity with mean salinity and surface temperature values revealing that ABFT is genetically structured along two environmental gradients. These results suggest that a preference for some spawning habitat conditions could contribute to shape ABFT genetic structuring in the Mediterranean. However, further studies should be performed to assess to what extent ABFT spawning behaviour in the Mediterranean Sea can be affected by environmental variation.(undefined

    Molecular Identification of Atlantic Bluefin Tuna (Thunnus thynnus, Scombridae) Larvae and Development of a DNA Character-Based Identification Key for Mediterranean Scombrids

    Get PDF
    The Atlantic bluefin tuna, Thunnus thynnus, is a commercially important species that has been severely over-exploited in the recent past. Although the eastern Atlantic and Mediterranean stock is now showing signs of recovery, its current status remains very uncertain and as a consequence their recovery is dependent upon severe management informed by rigorous scientific research. Monitoring of early life history stages can inform decision makers about the health of the species based upon recruitment and survival rates. Misidentification of fish larvae and eggs can lead to inaccurate estimates of stock biomass and productivity which can trigger demands for increased quotas and unsound management conclusions. Herein we used a molecular approach employing mitochondrial and nuclear genes (CO1 and ITS1, respectively) to identify larvae (n = 188) collected from three spawning areas in the Mediterranean Sea by different institutions working with a regional fisheries management organization. Several techniques were used to analyze the genetic sequences (sequence alignments using search algorithms, neighbour joining trees, and a genetic character-based identification key) and an extensive comparison of the results is presented. During this process various inaccuracies in related publications and online databases were uncovered. Our results reveal important differences in the accuracy of the taxonomic identifications carried out by different ichthyoplanktologists following morphology- based methods. While less than half of larvae provided were bluefin tuna, other dominant taxa were bullet tuna (Auxis rochei), albacore (Thunnus alalunga) and little tunny (Euthynnus alletteratus). We advocate an expansion of expertise for a new generation of morphology-based taxonomists, increased dialogue between morphology-based and molecular taxonomists and increased scrutiny of public sequence databases.Versión del editor4,411

    The Real maccoyii: Identifying Tuna Sushi with DNA Barcodes – Contrasting Characteristic Attributes and Genetic Distances

    Get PDF
    BACKGROUND:The use of DNA barcodes for the identification of described species is one of the least controversial and most promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and place species. METHODOLOGY/PRINCIPAL FINDINGS:Here we developed a cytochrome c oxidase subunit I character-based key for the identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City) and Denver, Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the Barcode of Life Database (BOLD) as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of "white tuna" were not albacore (T. alalunga), but escolar (Lepidocybium flavorunneum), a gempylid species banned for sale in Italy and Japan due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus) or the critically endangered southern bluefin tuna (T. maccoyii), though nine restaurants that sold these species did not state these species on their menus. CONCLUSIONS/SIGNIFICANCE:The Convention on International Trade Endangered Species (CITES) requires that listed species must be identifiable in trade. This research fulfills this requirement for tuna, and supports the nomination of northern bluefin tuna for CITES listing in 2010

    Distribution and Habitat Associations of Billfish and Swordfish Larvae across Mesoscale Features in the Gulf of Mexico

    Get PDF
    Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006–2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m−2) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m−2), white marlin (5.44 larvae 1000 m−2), and swordfish (4.67 larvae 1000 m−2). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations
    corecore